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CERTAIN HEAT TRANSFER PROBLEMS IN A RECTANGULAR
REGION WITH MULTIPLE CUTOUTS
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Purdue University School of Engineering and Technology and School of Science at Indianapolis, IA 46223, U.S.A.

(Receired 7 July 1982 and in final form 9 December 1982)

Abstract-Employing a new class of functions, obtained from the refinement of a previous technique, the
following steady-state heat transfer problems are solved :(1) A prismatic rectangular bar is cooled or heated by
a fluid flowing in the circular cutouts of the bar. (2) Heat transfer in a rectangular region having uniformly
distributed heat sources in the circular inserts of different thermal conductivity. (3) Heat conduction in a
multiple hole rectangular bar having different inner and outer boundary temperatures. It is assumed that the
properties of the materials involved are temperature independent. Numerical results for the cases of

rectangular regions with 4 and 8 cavities are presented.

r,

K,

s.

regions outside, and inside the circular
cavities, respectively;
average;
inner boundary;
wall.

uniform temperature of the inner
circles;
the Green's function for the
concentrated source;
outside wall temperature;
velocities of the fluid at a given point
and at the centers of the cutouts;
ratio, w/wo;
rectangular coordinates.

lV,

x, y, z,

ave,
i,
w,

Greek symbols
IX, thermal dilTusivity;
VZ

• Laplace operator;
'I, '10' dimensionless variables, y]«,Y% ;
tp, CPo. polar angles shown in Fig. I ;
p, nondimensional coordinate. rla ;
Po.P, dimensionless values, ro/a, rla;
p~, fluid mass density;
).1>),z, quantities defined in equations (21)

and (26);
AI,A z,A 3,A4 , expressions defined in

equations (7);
dynamic viscosity;
dimensionless quantities, xla, xo/a.

Superscripts
*,0,(*),(0), symbols dilTerentiating various

eigenfunctions.

Subscripts
1,2.

H\'TRODUCTIO:X

IN RECENT years a few authors have investigated
problems similar to those solved in this article, Sparrow
and Loeiller [1,2] utilized polar coordinates in order to
obtain solutions for a fully developed laminar flow and
the related fully developed heat transfer in arrays of

!'\O:\tE!'\CLATURE

n,
N,
Nil,
P,

PI'PZ'

P,
q,
Q,

Ill.

M.

a, cross-section length;
A" unknown constants of integration;
An> unknown constants of integration;
b, cross-section width;
D" unknown constants of integration;
B., unknown constants of integration;
c,d,cI,dl,cz,dz, coordinates of the centers of the

cavities;
C, a, e;s;cz,az• dimensionless coordinates of the

centers of the cavities;
axial rate of change of ternperature;
specific heat at constant pressure;
functions defined in equations (9), (11),

(13) and (15);
average convection heat transfer
coefficient ;
J-l;
thermal conductivities of the two
materials;
ratio, kdkz;
terms in the series solution;
number of selected points on one of
the inner boundaries;
terms in the series solution;
number of holes in each quadrant;
Nusselt number;
pressure;
number of terms chosen in the series
solution;
axial rate of change of pressure;
uniformly distributed heat source;
rate of total heat transfer;
radius of each cavity;
radius of the path of integration for the
Green's function;
conduction shape factor per unit
length;
temperatures respectively in regions 1
and 2;

11 ,12. nondimensional values of TI> 12;
'ft. 'f?, 'fl*l, 'flol, various eigenfunctions in the

solution;
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METHOD OF SOLUTION

of a narrow rectangle having more holes along its
length than its width.

- T1-TwT1 =--- (Tli = inner temperature) for case (3),
7J;-Tw

'" T1-TwT1 = -- for cases (I) and (2), (I)
t;

(2)

subject to the outer boundary condition

- {e = ±1/2.
T1 = 0 at 1J = ±b/(2a).

In the following, the basic eigenfunctions suitable for
a rectangular region with four cutouts (Fig. I) are
derived. Later on, the poles ofthese singular functions
are placed at different points to obtain sets of solutions
for a multiple hole region. It is assumed that the portion
of the rectangular region outside the holes contains
no heat sources, and that its outer boundary is main­
tained at a constant temperature Tw• The governing
differential equation for the temperature T1 in this
region is given by

V2 7'1 = 0, V2 = 82/8e2+82/8112.

e= x]a, II = y/a,

The inner boundary conditions for various cases shall
be discussed later. The eigenfunctions of equation (I)
automatically satisfying condition (2) were derived in
the form of integrals in investigation [5]

Ti = f:x 1;,(e. II,eo. 110) cos (lq>o)p dq>o,

1= 0.1.2,3..... (3)

ex
T? = Jo 7~(e.1J.eo"lo)sin(1q>0)p dq>o,

1= 1.2.3.... ,

tubes arranged in triangular and square forms. Since
they assumed an infinitely long and wide cross­
sectional area for the arrays, their solutions were re­
duced to those for the cases of flow and heat transfer
around one tube. The continuity condition along each
plane separating the regions was then fulfilled through
the point-by-point technique. Rowley and Payne [3]
employed Howland functions [4] in order to obtain a
solution for the problem of a heat generating cylinder
cooled by a ring oflluid carrying holes. They assumed a
convective boundary condition at the inner holes with
a constant convection heat transfer coefficient h.
Mathematically, the problems investigated in this
article are somewhat more complicated than those
solved in refs. [I, 2] as the regions of the boundary
value problems are finite. The approximation of
Ii = constant shall not be employed here for case (I).
Instead, the exact boundary conditions of equality of
temperatures and the rate of heat flows in the solid and
fluid at the boundaries of the cutouts are utilized. The
mathematical portion of this investigation is based
upon the refinement of a technique developed in the
author's recent investigation [5]. The basic original
functions automatically satisfy a homogeneous outer
boundary condition, and have singularity in each
quadrant. The poles of these basic functions can be
placed at any desired location and they can be repeated,
thus, producing sets offunctions suitable for 4N cutouts
symmetrically located with respect to the axes of
symmetry of the cross-section. However. in each
quadrant the N holes need not be of the same size. nor
shall they be located in any orderly fashion. The inner
boundary conditions are satisfied through the point­
by-point technique and the employment of the method
of least square error [6].

The polar coordinate technique used in refs. [1,2]
and the Howland functions method employed in ref.
[3] are not suitable for rectangular regions with
multiple cutouts. This fact is especially true for the case

$
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FIG. I. Rectangular section with four circular cutouts.
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in which

in which

cosh (nntIo) cos (nn~o) = cos (nne)cosh (nn{l)A1

+i cos (nne) sinh (nn{l)A2-sin (nne)cosh (nn{l)A3

+i sin (nne)sinh (nn{l)A4 , (6)

(8)

The functions A 1-A 4 are now expanded into infinite
series. Thus, it is found

AI = (1/2){cos [nnp(cos ([>o+i sin ([>0)]

+cos [lInp(cos ([>o-i sin ([>o)])

= (1/2) [cos (lInp ei'l'o)+cos(nnp e-i'l'O)]

[
(nnp ei'l'O)2 (mrp ei'l'°t

= (1/2) 1- 2! + 4!

Al = cos (nnp cos ([>0) cos (i nnii sin ([>0),

A2 = cos(ll1rp cos ([>0) sin (i nnp sin ([>0)'

A 3 = sin (nnp cos ([>0) cos (i mrp sin ([>0)' (7)

A4 = sin (nnp cos ([>0) sin (i nnp sin ([>0),

i = V-I.

00 (mrp)2m
= I (_I)m--- cos 2m([>0'

m=O (2m)!

The other functions can be written in Fourier series in
the same fashion. The expanded forms of A I-A4 and
other similar functions make it possible to carry out the
integrations in (3)analytically. For the regions in which
IIIII-al ~ p this procedure leads to the determination
of the eigenfunctions in single series forms. However,
for the regions lilli-a, < p the process does not yield a
single series solution for T1 and T? as the two forms of
the Green's function given in equation (4) must be
employed. In order to eliminate this difficulty, the
radius of the path of integration is shrunk to zero.
Absorbing the n independent quantities such as

p(_l)m (np)2m
(2m)!

into the unknown coefficients of the eigenfunctions,
gives

(4)

(5)
~o = c+ Pcos ([>0' c = cia,

tIo = a+p sin ([>0' a = dja,

x {COSh (mt1l)sinh [nn(Ilo -1b/a)]}

cosh (1nnb/a)

x cos (nn~) cos (Im~o) for 110 > II > - tk»

x {COSh (mrtIo) sinh [mr(II-1b/a)]}

cosh (1mrb/a)

x cos (mr~) cos (mr~o) for b/(2a) ~ II ~ tIo,

00

t(~,tI,~o"lo) = I [4/(mr)].= 1,3,5

00

t(~"I'~O"lo) = I [4/(mr)].= 1,3,5

it is found

and the integrations are carried over a circular path
with a very small but finite radius f = pa (Fig. 1). In
investigation [5] the Green's function t was obtained
by prescribing sets of line sources in the form of

. Fourier series along 11= ±llo, and by the limiting
process as the segmental line sources tend to point
sources.

Unlike the previous investigation [5], the integra­
tions of t here are carried out analytically and the
limiting functions for T1 and T? are obtained as ptends
to zero. Thus, writing

_ m ~ (n)2m-l cos(nne)cosh(nna)!(i' )
T!m=(-I) c: I 1,>,11,.= 1,3,5 cosh (znnb/a)

ft(~,II)=sinh[nn(II-1b/a)]cos(mr~) for 1b/a~ll>a, m=0,1,2,3, ... ,
(9)

-. _ m ~ (n)2m-2 sin (nne)cosh (nna) ! (J' I)
T 2m- 1-(-I) c: h(1 b/) 1'>,1,.= 1,3,5 cos 2,m a

-0 _ m+l ~ (n)2m-l sin (nne)sinh (Il1ra)
T 2m-(-I) c: he b/) fl(~,II),

.=1,3,5 cos 2,m a

_ 0 _ m ~ (n)2m - 2 cos (nne)sinh (nna)
T 2m- 1 -(-1) c: he b/) fl(~,II),.= 1,3,5 cos 2,m a

for !b/a ~ tI > a, m = 1,2,3, ... ,

'. m ~ (n)2m-l sinh[nn(a-1b/a)].cos(nne)!(i' )
T2m= ( - I ) c: 1· 2,>,11,.= 1.3,5 cosh bnnb/a)

f2(~' tIl = cosh (nml)cos (nn~) for a> II> - a, m = 0, 1,2,3, ... ,

(10)

(11)
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,....* __ ).. ~ (11)2.. -2 sinh [nn(d-!b/a)] sin (mrC)! (1= )
12m- I - (1 L.. I b/) 2 -" f/ ,.= 1.3 .5 cosh hnrr a

-0 _(_ .. +1 ~ (n)2 .. -1 cosh[mr(d-!b/a)]sin(llrrC)!(1=)
T 2.. - 1) L.. I 2-,,11,

.=1.3.5 coshhmrb/a)

-0 =(_).. ~ (n)2 ..-2 cosh [mr(d-!b/a)] cos (mrC)! (1= )
T 2.. - IlL.. I b/) 2 -" IJ ,

.= 1.3 .5 cosh hnn a

for d>II>-d, m=I,2,3, ....

(12)

(13)

Similar expressions are written for the region -d> IJ> -(b/2a) by the consideration of symmetry. The
eigenfunctions so derived ha vecertain disadvantages from the point of view of obtaining numerical results. First of
all, the series solutions (9}-{12) are divergent along the lines IJ= d and II = -d for m > 0. Secondly, the
convergence of these series solutions are poor for small values oflllJl-d,.To overcome this difficulty, the following
technique is introduced. Consider the cross-section of the rectangular bar ifit is rotated n/2 radians. Employing the
same procedure as before, the eigenfunctions with respect to ~ = (a/b)II and ij = (a/b)~ are derived. Thus, the
sinusoidal terms contain IIrather than c. For the sake of brevity the intermediate steps are avoided, and only the
final results are presented.

T2~ = (a/W" f: (n)2"-1 cos (nna:/b) cosh (nnac/b)11(~,II),
.=1.3.5 cosh (znna/b)

11(~, II)= sinh [mra(~ -!)/b] cos (nm/a/b), for t > ~ > C, m = 0, 1,2,3, ... ,

T
2"'
..>_I = (ajb)2"-1 ~ (n)2.. -2 cos (mrad/b) sinh (nnae/b)7' )

L.. h(1 /b) J1(~,II,.= 1.3.5 cos lnna

-(0) _ (/b)2.. ~ (n)2"-1 sin (mraiI/b) sinh (mrae/b)7'(
T 2m- a L.. h(1 /b) )1 ~,IJ),

.= 1.3.5 cos "2nna

'i"/O) = (/b)2 ..-1 ~ (n)2 .. -2 sin (nnad/b) cosh (Ilnae/b) 7'(1= )
1 i .. -1 a L... I b J 1 -" II '

.= 1.3.5 cosh (znrra/ )

for t > ~ > C, m = 1,2,3, ... ,

T*> _ jb)2m ~ (n)2m-l sinh [nna(c-t)/b] cos (Ilnad/b)!:
2m - (a L.. h (I /b) 2(~' IJ),

.=1 .3.5 cos "2mra

I2(~' II) = cosh (mra~/b)cos (mra'l/b), m = 0,1,2,3, . .. , for e > ~ > -c,

'1'("'> = (/b)2m-1 ~ (n)2 ..-2 cosh [nna(c-!)/b] cos (nnad/b)!: 1= )
2.. -1 a L... h(1 jb) 2(-,,1/,

.= 1.3.5 cos "2mra

r O) = (/b)2m ~ (n)2 .. -1 cosh [mra(e-t)/b] sin (nrrad/b)!: (
2.. a L... h(1 /b) 2~,11),

• = 1.3.5 cos "2nrra

TO) =( jb)2.. -1 ~ (1l)2.. -2 sinh [nna(e-!)/b] sin (nnad/b)!: (
2 .. -1 a L.. h(1 /b) 2 ~,IJ),

.= 1.3.5 cos lnna

(14)

(15)

(16)

in which 1'2 is the dimensionless temperature in region 2
(the region inside the cutouts), kl and k2'are respectively
the thermal conductivities of the materials in regions I

INNER BOUNDARY CONDITIO:-;S

The eigenfunctions derived in the previous section
automatically satisfy the outer boundary condition
'1'1 = O. For cases (I) and (2) the boundary con­
ditions at the inner cutouts are

for e> ~ > -c,

Mathematically, the values of the series solutions for
Tj and Tj are identical to those obtained from 7)"'> and
T}o>. This fact also has been verified numerically.
Therefore, at the points where one of the two sets of
series are divergent, or slowly convergent, the other set
with rapid convergence properties may be utilized.

The solution for the outer region 1 is now written as

co co

'1'1 = L AITt + L BIT?, (17)
1=0.1.2 1= 1.2.3

in which A, and B, are the unknown coefficients to be
determined.

m = 1,2,3, ....

1'1 = 1'2'

iJ7;/iJp = (k2/k l)iJTz/iJp,

(18)
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and 2, and P represents the direction normal to the
cutout. For case (3) the inner boundary condition is
simply given by

Utilizing (21) in the definition of bulk temperature

- Tbu ll
Tbull =T- I

w

and defining a Nusselt number (Nu),o on the basis of the
radius of the cutout ro, the following result is obtained:

(Nu)'a = rOklzave = -().tl4) (r~/a)2 • (25)
2 Tbulk

(19)

FORMUL\TION OF 7,

AND NUMERICAL RESULTS

Without the loss of generality, in the following
analysis only the cases of bars with four cutouts are
discussed. Due to the condition of symmetry it is
sufficient to consider the temperature distribution in
one of the circular regions . For case (I) of fully
developed laminar flow and fully developed heat
transfer the governing equations are given by

V21V= (a2p)/vllVo), IV = 0 at P = Po,

IV = w/wo, p = iJp/iJz = const., Wo = (-r5P)/(4p),

y27; = (a2C*w)/(iX Tw), C* = iJT2/oz = const.

it is found th at

FTo Ao
lbulk = (8/3) (roja) +(5/42)},,(ro/a).

Employing now the balance of the heat equation

p!CpC*Wo7fr5= - 2rrrolzaveClbu lk - Tw ) ,

(22)

(23)

(24)

(20)

in which w and 1V0 are respectively the velocities of the
fluid at any point and at the center ofthe cutout, iJp/iJz is
the axial rate of change of pressure, JL is the dynamic
viscosity, and a = K 2/Cp p! is the thermal dilfusivity. It
should be mentioned that in this case the temperature of
region 1 is also assumed to vary line arly along the
length of the rectangular bar as does the temperature of
the fluid . Since the fluid properties are independent
from temperature, the velocity field is rotationally
symmetric. This situation, however, is not the case for
the temperature distribution. Employing dimension­
less polar coordinates p = ria and cp at the center of the
cutout (Fig. I), the solutions of equations (20) are
written in the following forms:

IV = [1- p2(a/ro)2],

(26)

co

7"2 = (1;,2), + I Anp· cos (lIcp)
.=0,1,2

<Xl

+ I B.p· sin (lIcp) ,.= 1,2,3
(21)

For case (2) of a uniformly distributed heat source
per unit volume, cj, theequationfor temperature is given
by

\721i = -22,

cja2

)'2 = - k T.'
2 w

The complementary solution for equation (26) has the
same form as that given in equation (21), and its
particular solution is

(Tp2h = -(1/4».2p 2. (27)

It remains to satisfy the inner boundary conditions
and determine the unknown constants of integration
A" B, and A., Bn given in equations (17) and (21). In
order to accomplish this goal for ca ses (I) and (2),P, and
P2 terms are respectively chosen in the series solu­
tions given for 7", and 7"2' The boundary conditions
(18) are then satisfied at M points in such a way that
2M> (P, +P2)givingaset of2M linear equations with
(P, + P2) unknowns. These equations are normal­
ized and approximately solved by the technique of
least square error [6]. For case (3), P terms in the
series solution 7; are selected and the boundary
condition(s) are satisfied at M > P points of the inner
boundary(ies) in one quadrant.

Table I. The values of !!imen sionless temperature T. = Ii at P = Po for case (I) with
C= 0.25, iT = 0.t25, Po = 0.0625, K = 0.07, )-r = 1000, N = I

Tbu' .

(24/7t)IjJ.. d. I 3 5 7 9 11
1', -0.07664 -0.07052 -0.06766 -0.06890 -0.07447 -0.08386

(24/7t)IjJ.. d . 13 IS 17 19 21 23
T. -0.09602 -0.1097 -0.1238 -0.1374 -0.1496 -0.1601

(24/7t)IjJ.. d . 25 27 29 31 33 35
1; -0.1681 -0.1730 -0.1739 -0.1704 -0.1629 -0.1525

(24/7t)IjJ.. d . 37 39 41 . 43 ' 45 47
1', -0.1405 -0.1283 -0.1164 -0.1052 -0.09462 -0.08496
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27
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),2 ·1000
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31T/ 2

FIG. 2. The values of the dimensionless temp erature around the boundary of two different materials in one
quadrant.

From the fact that Ao depends on the ratio K = kt/kz,
and that it is proportional to ;'\0 it is seen from
equations (23) and (25) that the Nusselt number is a
function of geometry and properties of the two
materials. The numerical examples presented here are
on the basis of material properties in real situations. All
of the numerical results with the exception of those for
case (3) are for rectangular bars with four cutouts.

In Table I, the values ofdimensionless temperature T
around the boundary of the two materials and 7;,ul k are
presented for case (1) with Xl = 1000, and K = 0.03.
In Table 2, the values of (NII),o vs K are given for
the fixed geometry of C = 0.25, a= 0.125, and
Po = 0.0625. In Fig. 2, the values of the dimensionless
temp erature around the boundary of two different
materials with K = 7and K = 9 are plotted for the case
of uniformly distributed heat sources in the inner circles
with }.z = 1000.In Fig. 3, the values ofnondimensional
conduction shape factors

(28)

for a case of a rectangular bar with 8 circular cavities are
plotted vs Po for b[a = 0.5 and bla = 0.6. The di­
mensionless coordinates of the centers of the circular
holes for this case are denoted by Ct , ai' Cz and az' For
this case it is also assumed th at the temperature T; is the
same for all 8 circular cavities.

Table 2. Th e values of Nusselt number (Nil),. vs K for case
(I) with c= 0.25, /1= 0.125, Po = 0.0625, and N = 1

CO;-';CLUSION

For all of the numerical results presented in this
investi gation, the number of terms in the series solution
and the number of points on the inner boundary(ies) in
one quadrant are chosen in such a way that a system of

2r.

40 b~O0
00 00

a

35

30

25

0 09

K

(Nlll,.

0.03 0.05 0.07 0.09

0.03752 0.03552 0.03374 0.03213

p • r /0
o •

FIG. 3. The values of nondimensional shape factor S vs Po for
two bla ratios.
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60 x 48 linear algebraic equations are obtained. The
results found from the approximate solution of these
equations [6] are very accurate and well within the
.usual engineering approximations. For example, in the
case of a rectangular bar with 8 circular cavities, the
relative error in satisfaction of the inner boundary
condition 1'1 = I is of the order of 10- S or less at the
selected points.

When the material properties are assumed to be
independent of temperature, thederived eigenfunctions
produce a powerful technique for solving the steady
state heat transfer problems in multiply-connected
rectangular regions.

The method ofsolution can be extended to the caseof
a rectangular bar with noncircular cavities. It is also
believed that similar eigenfunctions may be derived for
the solutions of other applied mechanics problems such
as three dimensional heat conduction in a rectangular
parallelopiped with cylindrical cavities, and certain
plate problems.

Acknoll'/edgemellts-The author wishes to thank the
Department of Computing Services of IUPUI for providing
CDC 6600 computer time for this investigation.

REFERE!'iCfS

1. E. M. Sparrow and A. L. Loeffler, Jr, Longitudinal laminar
flow between cylinders arranged in regular array, A.I.Ch.E.
115,325-330 (1959).

2. E. M. Sparrow, A. L. Leoffler,Jr and H. A. Hubbard, Heat
transfer to longitudinal laminar flow between cylinders, 1.
Ilear Transfer 83,415-422 (1961).

3. 1. C. Rowley and J. B. Payne, Steady state temperature
solution for a heat generating circular cylinder cooled by a
ring of holes, Trans. Am. Soc. Mech. Enqrs, Series C,l. Heal
Transfer 86,531-536 (1964).

4. R. C. J. Howland, Potential functions periodicity in one
coordinate, Proc. CambroPhil. Soc. 30, 315-326 (1935) .

5. A. K. Naghdi, Solution of Poisson's equation in a
rectangular region with multiple holes, Proc. 10lh Soutli
Eastern COllI. on Theoretical and Applied Mech., 10, 151­
161 (1980).

6. F. B. Hildebrand, Introductioll to Numerical Analysis.
McGraw-Hili, New York (1956).

CERTAINS PROBLEMES THERMIQUES DANS UN DOMAINE RECTANGULAIRE AVEC
PLUSlEURS FENETRES

Resume - En employant un nouvelle famille de Ionctions obtenue par amelioration d'une technique
anterieure, on resoud les problernes thermiques permanents suivants. (1) Une barre prisrnatique a base rec­
tangulaire est refroidie ou chauflee par un fluides'ecoulant dans les bases circulaires de la barre. (2) Le transfert
thermique dans une region rectangulaire qui a des sources thermiques uniforrnement distribuees avec
differentcs conductivites, (3) Conduction thermique dans une barre rectangulairc a plusieurs trous qui a
differentes temperatures aux Irontieres d'entree et de sortie, On suppose que les proprietes des materiaux sont
independantesde la temperature, On presente des resultats nurneriques pour les cas des regions rectangulaires

avec 4 et 8 cavites.

EINIGE WARMEOBERTRAGUNGSPROBLEME IN EINEM RECHTECKIGEN
GEBIET MIT MEHRFACHEN AUSSCHNITTEN

Zusammenfassung-Durch Anwendung einer neuen Klasse von Funktionen, welche durch Weiter­
entwicklung einer friiheren Methode gewonnen wurden, konnten die folgcnden stationaren Warrne­
iibertragungsprobleme gelost werden.

(1) Eine prismatischer rechteckigcr Stab wird liber ein Fluid das in kreisforrnigen Ausschnitten des Stabcs
strornt, gekiihlt oder beheizt.

(2) Wiirmeiibertragung in einem rechteckigen Gebiet mit gIeichfiirmig verteilten Warmequellen in
kreisforrnigen Einsatzen von unterschiedlicher Wdrrneleitfahigkeit.

(3) Wiirmeleitung in einem rechteckigen Stab mit mehreren Bohrungen und unterschiedlichen inneren und
aul3eren Wandtcmperaturen.

Die Eigenschaften der Materialien wurden als ternperaturunabhangig angenommen. Numerische
Losungen fUr rechteckige Gebiete mit 4 und 8 Hohlraumen werden angegeben,

HEKOTOPblE 3AIlAYU TEnnOnEPEHOCA B nPRMOyrOnbHoft OI>nACTH C
MHOrOYUCllEHHblMH npOPE3JIMH

AHHOTaUHIl-C nO~lOmLIO IIOBoro xnacca epym.;uJlii. nonyxeuuux nOC,1C ycoscpurencraosanus pauee
pa3BJlTOrO xrerona, peureuu Co1e.nYHJWUC aanaxn crauaouapuoro rennonepeuoca: I) npmvraruuecxuii
npsxroyronsuun 6pycOK oxnaxnaerca lUlU aarpeaaercs 1I0TOKO~1 :+.:IU\KOCTU. npoxonaumst xepea
xpyrnue orsepcrus B 6pyCKC; 2) Tcnnonepclloc B npssroyronsuon ofinacru c paaaoxrepuo pacnpene­
.1ellllbl~1II IICTO'lIlJlKa~lIl 'renna B xpyrrnax BCTaBKax c paannxnoii rennonpoaonnocn.ro ; 3) nepczrasa
Tenna TennonpOBo.nllocrblO B npasroyronsuoxi fipycxe c smorosucnennuxur oraepcrnsxur npn
pa3110CTII rexrneparyp na suyrpeuueti II nueurueti rpauuuax, Ilpennonaraerca, xro caoiicraa
ucnonsayesrstx xsarepuancs lie aaancsr OT'rexrnepa rypsr . Flpcncraaneuu 'lIlCnellllble peaym.rart: nns

npssroyronsuux ofinacreti c 4 II 8 nonocraxur ,




