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Abstract—Employing a new class of functions, obtained from the refinement of a previous technique, the
following steady-state heat transfer problemsare solved : (1) A prismaticrectangular baris cooled or heated by
a fluid flowing in the circular cutouts of the bar. (2) Heat transfer in a rectangular region having uniformly
distributed heat sources in the circular inserts of different thermal conductivity. (3) Heat conduction in a
multiple hole rectangular bar having different inner and outer boundary temperatures. It is assumed that the
properties of the materials involved are temperature independent. Numerical results for the cases of
rectangular regions with 4 and 8 cavities are presented.
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centers of the cavities;

axial rate of change of temperature;
specific heat at constant pressure;
functions defined in equations (9), (11),
(13) and (15);

average convection heat transfer
coefficient;

V-1

thermal conductivities of the two
materials;

ratio, k,/k,;

terms in the series solution;

number of selected points on one of
the inner boundaries;

terms in the series solution;

number of holes in each quadrant;
Nusselt number;

pressure;

number of terms chosen in the series
solution;

axial rate of change of pressure;
uniformly distributed heat source;
rate of total heat transfer;

radius of each cavity;

radius of the path of integration for the
Green’s function;

conduction shape factor per unit
length;

temperatures respectively in regions 1
and 2;

nondimensional values of T3, T5 ;

T*, T?, T, T\9, various eigenfunctions in the

solution;

Ty uniform temperature of the inner
circles;

T, the Green’s function for the
concentrated source;

T., outside wall temperature;

W, Wo, velocities of the fluid at a given point
and at the centers of the cutouts;

w, ratio, w/wg;

X, 2, rectangular coordinates.

Greek symbols

a, thermal diffusivity;

V2, Laplace operator;

RS dimensionless variables, y/a, yo/fa;

@, Pos polar angles shown in Fig. 1;

P, nondimensional coordinate, r/a;

Pos Os dimensionless values, ro/a, r/a;

p3, fluid mass density;

A g, quantities defined in equations (21)

and (26);

Ay A A AL, expressions defined in

H,
éa éOa

Subscripts
1,2,

ave,
i,
W,

Superscripts

equations (7);
dynamic viscosity;
dimensionless quantities, x/a, xo/a.

regions outside, and inside the circular
cavities, respectively;

average;

inner boundary;

wall.

*,0,(*), (0), symbols differentiating various

eigenfunctions.

INTRODUCTION

IN RECENT years a few authors have investigated
problems similar to those solved in this article. Sparrow
and Loefller [1, 2] utilized polar coordinatesin order to
obtain solutions for a fully developed laminar flow and
the related fully developed heat transfer in arrays of
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tubes arranged in triangular and square forms. Since
they assumed an infinitely long and wide cross-
sectional area for the arrays, their solutions were re-
duced to those for the cases of flow and heat transfer
around one tube. The continuity condition along each
plane separating the regions was then fulfilled through
the point-by-point technique. Rowley and Payne [3]
employed Howland functions [4] in order to obtain a
solution for the problem of a heat generating cylinder
cooled by aring of fluid carrying holes. They assumed a
convective boundary condition at the inner holes with
a constant convection heat transfer coefficient h.
Mathematically, the problems investigated in this
article are somewhat more complicated than those
solved in refs. [1, 2] as the regions of the boundary
value problems are finite. The approximation of
h = constant shall not be employed here for case (1).
Instead, the exact boundary conditions of equality of
temperatures and the rate of heat flows in the solid and
fluid at the boundaries of the cutouts are utilized. The
mathematical portion of this investigation is based
upon the refinement of a technique developed in the
author’s recent investigation [5]. The basic original
functions automatically satisfy a homogeneous outer
boundary condition, and have singularity in each
quadrant. The poles of these basic functions can be
placed at anydesired location and they can be repeated,
thus, producingsets of functions suitablefor 4N cutouts
symmetrically located with respect to the axes of
symmetry of the cross-section. However, in each
quadrant the N holes need not be of the same size, nor
shall they be located in any orderly fashion. The inner
boundary conditions are satisfied through the point-
by-point technique and the employment of the method
of least square error [6].

The polar coordinate technique used in refs. [1, 2]
and the Howland functions method employed in ref.
[3] are not suitable for rectangular regions with
multiple cutouts. This fact is especially true for the case
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of a narrow rectangle having more holes along its
length than its width.

METHOD OF SOLUTION

In the following, the basic eigenfunctions suitable for
a rectangular region with four cutouts (Fig. 1) are
derived. Later on, the poles of these singular functions
are placed at different points to obtain sets of solutions
foramultiple holeregion. Itis assumed that the portion
of the rectangular region outside the holes contains
no heat sources, and that its outer boundary is main-
tained at a constant temperature T,. The governing
differential equation for the temperature T, in this
region is given by

V2T, =0, V2= 0%0c%+d%an?,

§=x/a, n=yla,
T, =———— forcases(l)and (2), (1)
~ T,—T,
T, = L. (T}; = inner temperature) for case (3),
7‘“_ Tw
subject to the outer boundary condition
- &=%1/2,
= 2
hi=0 {n ~ +b/2a) @

The inner boundary conditions for various cases shall
be discussed later. The eigenfunctions of equation (1)
automatically satisfying condition (2) were derived in
the form of integrals in investigation [5]

2
T3 =J ﬁ(f,'l,fo,’lo)cos(hpo)ﬁ doo,

o
1=0,1,2,3,...,
)

2n
= J‘ T&, 1,80 10) sin (lo)p doo,
0

1=1,23,...,

F1G. 1. Rectangular section with four circular cutouts.
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in which

TEméand= Y [4m)]

n=1,3,5

y {cosh (n7y0) sinh [nn(); —%b/a)]}

cosh ({nnb/a)

x cos(nng) cos(nnéy) for b/(2a) =y = n,,

@

«w

’Tc(é’ 1, 50) '70) = z

n=1,3,5

[(4/nm)]

y {cosh (nan) sinh [nn(y, —1b/a)] }

cosh(3nnb/a)

x cos(nn)cos(nnly) for no>n> —n,

and the integrations are carried over a circular path
with a very small but finite radius 7 = ga (Fig. 1). In
investigation [5] the Green's function 7, was obtained
by prescribing sets of line sources in the form of
" Fourier series along n = 1., and by the limiting
process as the segmental line sources tend to point
sources.

Unlike the previous investigation [5], the integra-
tions of 7. here are carried out analytically and the
limiting functions for T¥ and T{ are obtained as g tends
to zero. Thus, writing

¢ =cfa,

d=d/a,

o = C+p cos o,
_ . 8)]
o = d+p sin @o,

it is found

cosh (nnn,) cos (nné ) = cos(nne) cosh (nad)A
+1 cos (nné) sinh (nnd)A , —sin (nné) cosh (nnd)A,
+i sin(nng) sinh (nnd)A,,  (6)

in which
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A = cos(nmp cos @y)cos(i nap sin @),

A, = cos(nnp cos @g)sin(i nng sin @q),

A; = sin(nnp cos @g)cos(i nnp sin @), )

A, =sin(nnp cos @g)sin(i nrp sin @),
i=-1

The functions A;—A, are now expanded into infinite
series. Thus, it is found

A; = (1/2){cos [nrp(cos @o+i sin @g)]
+cos [nmp(cos @o—i sin @g)]}
= (1/2)[cos (nnp €'9°)+cos(nrp e~ 1¥°)]

(nnp €9 (nmp e'vo)*
- o + a —...

_(ump ¢~ ivo)? 4 (nmp et :I

= (1/2)[1

+1 2! 4!
© (nn.ﬁ)Zm

= Z =0 2m)!

m=0

cos 2m@g. (8)

Theother functions can be writtenin Fourier seriesin
the same fashion. The expanded forms of A,-A, and
other similar functions make it possible to carry out the
integrationsin(3) analytically. For the regions in which
|171—4d] > p this procedure leads to the determination
of the eigenfunctions in single series forms. However,
for the regions | || —d| < f the process does not yield a
single series solution for T# and T? as the two forms of
the Green’s function given in equation (4) must be
employed. In order to eliminate this difficulty, the
radius of the path of integration is shrunk to zero.
Absorbing the n independent quantities such as

2m

(mp
2m)!

p(=1"

into the unknown coefficients of the eigenfunctions,
gives

®  (n)*™! cos(nné) cosh (nnd)

T;m = (_l)m n=12’:3'5 COSh(%nﬂb/a) fl(é’ 'I)s .
Si(&,n) = sinh [nn(y—1b/a)] cos(nn&) for dbjazy>d, m=0,1,23,..., ©)
e ¢ wm o (m)??sin(uné) cosh(nnd)
T2m— 1= (_ 1) ,.=:L?3,5 cosh (%Ilﬂb/a) fl(é) ’]),
20 w1l o (m)?™~ 1 sin (nné) sinh (nnd)
T2m - ( 1) "=§:3’5 cosh (%mrb/a) fl(é’ ’I)y (10)
20 pm e (n)*™~2 cos (nné) sinh (nnd)
Tan-1=(=1) ,,=IZ.3'5 cosh (nnb/a) ALY
for ibfazn>d, m=1273,...,
e (o (n)>™~ ! sinh [nn(d —1b/a)] cos (nné)
r2m - ( 1) "=12’:3'5 COSh (%mrb/a) - f2(é1 ’I)i (1 1)

fo&,n) = cosh(nm)cos(nné) for d>n>—d, m=0,1,23,...,
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®  (n)*™~2 sinh [nn(d—1b/a)] sin (nné)

7}»;— 1 = (_ l)m ,,=12,3,5 COSh(%HbeG) f2(és '2)»

0 (it e (n)*™~ ! cosh [nn(d—1b/a)] sin (nnc)

Tgm - ( l) "=§3.5 COSh (%nnb/a) fz(é» '7), (12)
- _ 2 (n?m2 cosh [nn(d—3b/a)] cos (nnc)
-1 =(=1) F;,,s cosh (nnb/a) AGLY

for d>n>—d, m=123,....

Similar expressions are written for the region —d > 5 > —(b/2a) by the consideration of symmetry. The
eigenfunctionsso derived have certain disadvantages from the point of view of obtaining numerical results. First of
all, the series solutions (9)-(12) are divergent along the lines y =d and n = —d for m > 0. Secondly, the
convergence of these series solutions are poor for small values of | || — d|. To overcome this difficulty, the following
techniqueisintroduced. Consider the cross-section of the rectangular bar ifitisrotated n/2 radians. Employing the
same procedure as before, the eigenfunctions with respect to & = (a/b)n and 7j = (a/b)¢ are derived. Thus, the
sinusoidal terms contain # rather than &. For the sake of brevity the intermediate steps are avoided, and only the

final results are presented.

®  (n)*™~! cos(nrnad/b) cosh(nnac/b)

&),

T® =ty X

n=1,3,5

cosh (dnna/b)

(13)

fi(&, ) = sinh [nna(é~$)/b] cos (nmyafb), for +>Eé>¢ m=0,1,23,...,

©  (n)>™2 cos(nrad/b) sinh (nnac/b)

TS -1 =(bp""t 3

n=1,3,5

®  (n)*™~1 sin(nnad/b)sinh (nrac/b)

cosh (3nna/b) S, m),

.7 l(éa '7))

9, =(aby™ %

n=1,3,5

O = @t Y,

cosh (3nna/b)
©  (n)*™~2 sin(nnad/b) cosh (nmac/b)

(14)

n=1,3,5

for 1>¢&>¢

©  (n)*™~! sinh [nna(¢—4)/b] cos (nmad/b)

fin),

cosh (3nna/b)

m=123,...,

T4 = @by ¥,

r=1,3,5

J>(&, ) = cosh (nra&/b) cos (nman/b),

TG, = @byt Y,

cosh (3nna/b)

®  (n)*™2 cosh [nra(c—1)/b] cos(nnad/b)

foCom),

(15)
m=0,1,2,3,..., for é>¢&> —¢,

n=1,3,5

©  (n)?™! cosh [nna(c—1)/b] sin (nrad/b)

cosh (Gnna/b) Fiem),

TH = (a/by™ 3,

n=1,3,5

O, =@y Y,

cosh ({nna/b)

& (n)*™~? sinh [nra(f—2)/b] sin (nwad/b)

Fa(&Em),
(16)

]. 2(5! ’l))

n=1,3,5

for ¢>¢&> —¢,

cosh (3nna/b)
m=1273,....

Mathematically, the values of the series solutions for
T¥ and T{ areidentical to those obtained from T{* and
T, This fact also has been verified numerically.
Therefore, at the points where one of the two sets of
series are divergent, or slowly convergent, the other set
with rapid convergence properties may be utilized.
The solution for the outer region 1 is now written as

’Tx= Z AxT?‘+ Z BIT?a
1=0,1,2 1=1,2.3

(17

in which A; and B, are the unknown coefficients to be '

determined.

INNER BOUNDARY CONDITIONS

The eigenfunctions derived in the previous section
automatically satisfy the outer boundary condition
T; =0. For cases (1) and (2} the boundary con-

ditions at the inner cutouts are
T,=T
. 1 2 ) (18)
0Ty/0p = (k,/k,)0T>/dp,

inwhich T; is the dimensionless temperaturein region 2
(the regioninside the cutouts), k, and k; are respectively
the thermal conductivities of the materials in regions 1
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and 2, and p represents the direction normal to the
cutout. For case (3) the inner boundary condition is
simply given by
Ty= 1. (19)
FORMULATION OF T,
AND NUMERICAL RESULTS

Without the loss of generality, in the following
analysis only the cases of bars with four cutouts are
discussed. Due to the condition of symmetry it is
sufficient to consider the temperature distribution in
one of the circular regions. For case (1) of fully
developed laminar flow and fully developed heat
transfer the governing equations are given by

V30 = (@?P)/uwg), w=0 at p = p,,
W =wfwg, P=dp/dz=-const, wo= (—riP)/(4y),
VT, = (@*C*w)/(aT,), C* = dT,/dz = const.

(20)
in which w and w,, are respectively the velocities of the
fluid at any point and at the center of the cutout, dp/dz is
the axial rate of change of pressure, u is the dynamic
viscosity,and a = K,/C,p% is the thermal diffusivity. It
should be mentioned thatin this case the temperature of
region 1 is also assumed to vary linearly along the
length of the rectangular bar as does the temperature of
the fluid. Since the fluid properties are independent
from temperature, the velocity field is rotationally
symmetric. This situation, however, is not the case for
the temperature distribution. Employing dimension-
less polar coordinates p = r/aand ¢ at the center of the
cutout (Fig. 1), the solutions of equations (20) are
written in the following forms:

w = [1—p*afro)*],

=T+ Y. Ap"cos(ng) -

n=0,1,2

+ Y B,p"sin(ng),

n=1,2,3

~ 21
(T;2)1 = 14[0*/4+(p*/16)(a/ro)?],

Ay = (a*C*wo)/(aT,).
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Utilizing (21) in the definition of bulk temperature

T ’I;Julk
Tou = 2% 1
bulk T

w

2n {*ro/a
j '[ [1—pXafro)*1Tap dp dop

= - 2r : rola (22)
J [1—p*(a/ro)*1p dp do
0 [0}
it is found that
A
T = 8/3) =~ +(5/4D2(rofa).  (23)
(ro/a)
Employing now the balance of the heat equation
P:Cpc*wom'(z) = —2nrohy Toun— To)s (24)

and defining a Nusselt number (N u),0 onthebasisof the
radius of the cutout ry, the following result is obtained :
roh

(Nu),, =22 = —(3,/4) 2L
k2 ! nulk

(25)

For case (2) of a uniformly distributed heat source
per unit volume, 4, the equationfor temperatureis given
by

VT, = =2,
. (26)
a
b= -2
k,T.

The complementary solution for equation (26) has the
same form as that given in equation (21), and its
particular solution is
(T;yz)z = _(1/4)22,)2_ 27
It remains to satisfy the inner boundary conditions
and determine the unknown constants of integration
A, B, and A, B, given in equations (17) and (21). In
order to accomplish this goalfor cases(1)and (2), p, and
p, terms are respectively chosen in the series solu-
tions given for T; and T,. The boundary conditions
(18) are then satisfied at M points in such a way that
2M > (p, +p,) giving a set of 2M linear equations with
(p1+p,) unknowns. These equations are normal-
ized and approximately solved by the technique of
least square error [6]. For case (3), p terms in the
series solution 7, are selected and the boundary
condition(s) are satisfied at M > p points of the inner
boundary(ies) in one quadrant.

Table 1. The values of dimensionless temperature T; = T; at p = p,, for case (1) with
¢=025,d=0.125, p, = 0.0625, K = 0.07, 2, = 1000, N = 1

’T;)ulk

(24/7) .. 1 3 5 7 9 11

T, —0.07664 —0.07052 —006766 —0.06890 —0.07447 —0.08386
4/ raa. 13 15 17 19 21 23

T, —009602 —0.1097 —0.1238 —0.1374 —0.1496 —0.1601
(24/7) Peaa. 25 27 29 31 33 35

T, —0.1681 —0.1730 —0.1739 —0.1704 -0.1629 —0.1525
(24/m) ¢ aa. 37 39 41 43 45 47

T —0.1405 —01283 —01164 —0.1052 —0.09462 —0.08496
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I

23—

A, #1000

T 3IwT/s2 2r

FiG. 2. The values of the dimensionless temperature around the boundary of two different materials in one
quadrant.

From the fact that A, depends on the ratio K = k,/k,,
and that it is proportional to 1,, it is seen from
equations (23) and (25) that the Nusselt number is a
function of geometry and properties of the two
materials. The numerical examples presented here are
on the basis ol material properties in real situations. All
of the numerical results with the exception of those for
casc (3) are for rectangular bars with four cutouts.

InTable 1, the values of dimensionless temperature T
around the boundary of the two materials and Ty, are
presented for case (1) with £; = 1000, and K = 0.03.
In Table 2, the values of (Nu),, vs K are given for
the fixed geometry of C =025 d=0.125 and
Bo = 0.0625. In Fig. 2, the values of the dimensionless
temperature around the boundary of two different
materials with K = 7and K = 9areplotted for the case
of uniformly distributed heat sourcesin theinner circles
with 4, = 1000. In Fig. 3, the values of nondimensional
conduction shape factors

o

§=_ 2

k(T—T) 9

foracase ofarectangular bar with 8 circular cavities are
plotted vs p, for b/a=0.5 and bja =0.6. The di-
mensionless coordinates of the centers of the circular
holes for this case are denoted by ¢,,d,, ¢, and d,. For
this caseitis also assumed that the temperature T;is the
same for all 8 circular cavities.

Table 2. The values of Nusselt number (Nu),, vs K for case
(1) with ¢ = 0.25, d = 0.125, p, = 0.0625,and N = 1

K 0.03 0.05 0.07 0.09

(Nu),, 0.03752 003552 003374 0.03213

CONCLUSION

For all of the numerical results presented in this
investigation, the number of terms in the series solution
and the number of points on the inner boundary(ies) in
one quadrant are chosen in such a way that a system of

005

070,53 007 008 009

P, = r/o
FiG. 3. The values of nondimensional shape factor S vs p,, for
two b/a ratios.
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60 x 48 linear algebraic equations are obtained. The
results found from the approximate solution of these
equations [6] are very accurate and well within the
_usual engineering approximations. For example, in the
case of a rectangular bar with 8 circular cavities, the
relative error in satisfaction of the inner boundary
condition T; = 1 is of the order of 107 or less at the
selected points.

When the material properties are assumed to be
independent of temperature, the derived eigenfunctions
produce a powerful technique for solving the steady
state heat transfer problems in muliiply-connected
rectangular regions.

The method of solution can be extended to the case of
a rectangular bar with noncircular cavities. It is also
believed that similar eigenfunctions may be derived for
the solutions of other applied mechanics problems such
as three dimensional heat conduction in a rectangular
parallelopiped with cylindrical cavities, and certain
plate problems.
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CERTAINS PROBLEMES THERMIQUES DANS UN DOMAINE RECTANGULAIRE AVEC
PLUSIEURS FENETRES

Résumé—En employant un nouvelle famille de fonctions obtenue par amélioration d’une technique
antérieure, on résoud les problémes thermiques permanents suivants. (1) Une barre prismatique 4 base rec-
tangulaire est refroidie ou chauffée par un fluide s'écoulant dans les bases circulaires de la barre. (2) Le transfert
thermique dans une région rectangulaire qui a des sources thermiques uniformément distribuées avec
différentes conductivités. (3) Conduction thermique dans une barre rectangulaire & plusicurs trous qui a
différentes températures aux frontiéres d’entrée et de sortie. On suppose que les propriétés des matériaux sont
indépendantesdelatempérature. On présente des résultats numériques pour les cas des régions rectangulaires
avec 4 et 8 cavités.

EINIGE WARMEUBERTRAGUNGSPROBLEME IN EINEM RECHTECKIGEN
GEBIET MIT MEHRFACHEN AUSSCHNITTEN

Zusammenfassung—Durch Anwendung ciner neuen Klasse von Funktionen, welche durch Weiter-
entwicklung einer friiheren Methode gewonnen wurden, konnten die folgenden stationdren Wirme-

Gbertragungsprobleme geldst werden.

(1) Eine prismatischer rechteckiger Stab wird Giber ein Fluid das in kreisférmigen Ausschnitten des Stabes

stromt, gekiihlt oder beheizt.

(2) Warmeiibertragung in einem rechteckigen Gebiet mit gleichformig verteilten Wiarmequellen in
kreisformigen Einsdtzen von unterschiedlicher Warmeleitfahigkeit.
(3) Wirmeleitung in einem rechteckigen Stab mit mehreren Bohrungen und unterschiedlicheninnerenund

duBeren Wandtemperaturen.

Die Eigenschalten der Materialien wurden als temperaturunabhangig angenommen. Numerische
Losungen fiir rechteckige Gebiete mit 4 und 8 Hohlrdumen werden angegeben.

HEKOTOPBIE 3AJIAUHM TEIJIONEPEHOCA B MPSIMOYIQJILHOM OBJIACTH C
MHOIOYUCJAEHHBIMH TMPOPE3SAMU

Anotauns —C nomoubio HOBOro kjacca Qyskunil, nosyueHHbIX NOCAE YCOBEPIIEHCTBOBAHNA paHee
pa3BHTOrO METO/a, PeleHb! CIEAYIOLIE 3aJa4l CTALHOHAPHOro Tenjonepenoca: 1) npusMatiyecxkui
NpAMOYronbHblit OPYcOX OXNAaXKAAeTCs IIM HArPeBAETCA NOTOKOM AKHAKOCTH, INPOXOISLINM Yepe3
Kpyriible OTBEPCTHSR B Gpycke; 2) TEMIONepeHOC B NPAMOYronbHOil 06/1aCTH ¢ paBHOMEpPHO pacnpene-
JIEHHBIMH HCTOMHHKAMM TENJa B KPYrAbIX BCTABKaX € PAa3iH4HOIl TENIONPOBOAHOCTLIO; 3) nepeaaua
TEnna TenNonpoBOAHOCTbIO B MNPAMOYroAbHOM OpycKe ¢ MHOTOMHCACHHBIMH OTBEPCTHAMH NpH

PasHOCTH TEMMEpPaTyp Ha BHYTpeHHell u Buewsell rpaHnnax.

[Mpeanoaaraerca, 4ro c¢BoOiiCTBA

HCMIOJIb3YeMbIX MATEPHANIOB HE 3ABMCAT OT TemnepaTypbl. [1peaCTaBICHB! YHCACHHbIE PE3YALTATHE A%
NPEMOYToAbHBIX obnacTeii ¢ 4 1 8 nosocraMi.





